

Measuring and Supporting Proportional Reasoning: An Interdisciplinary Approach

Dissertation Defense June 24, 2022

Alexandria Viegut, Dept. of Educational Psychology, UW – Madison

Algebra is crucial for students' outcomes

- Fractions scores at age 10 predict algebra scores 5-6 years later, even controlling for other math skills, IQ, reading, etc. (Siegler et al., 2012)
- Correlated in many age groups (Hurst & Cordes, 2018; Powell et al., 2019)
- Fractions predict how much students learn from algebra instruction (Booth et al., 2014)

Fractions may be the keys to the gate

Some research suggests it is all about *magnitude*

 $\frac{5}{9} + \frac{2}{3}$

Having an approximate sense of fraction magnitudes helps people avoid common errors! We have intuitions about visual proportions that can help us with this "fraction sense"?

But other research shows that fractions knowledge is much *broader*

	Fractions Kr	nowledge	
Subconstructs	Schemes	Models	Tasks
Part-Whole	Partitive	Area Model	Estimate
Quotient	Iterative Reversible	Discrete Set	Compare
Ratio		Number Line	Transform
Magnitude Operator	Operations	Continuous	Arithmetic
Measure	Splitting	Proportion	Justify & Explain
	Units Coordination	Symbolic	Construct
	Develop	ment	

Study 1 focuses on *magnitude*.

What kind of lesson with number lines helps 3rd-4th graders build an approximate "fraction sense"?

Study 2 focuses on broader fractions knowledge

2x + y - 4 = x - 2

2Xiy = Xi2Fractions Why? Knowledge y = b' x = log, y Common in psych: Magnitude Arithmetic Common in math ed: **Schemes Units Coordination**

Key Questions of this dissertation

Study 1: How can we best use **number lines** to support students' fraction **magnitude** knowledge?

Study 2:

What can we learn about **why fractions relate to algebra** from including **multiple measures** of fractions knowledge?

Study 1: How can we use number lines to support students' fraction magnitude knowledge?

How big is 3 compared to 10?

How big is 3/10 compared to 1?

Knowing how whole number sizes relate might help kids estimate fractions.

Study 1: How can we use number lines to support students' fraction magnitude knowledge?

Knowing how whole number sizes relate might help kids estimate fractions.

Study 1: Which lesson helps 3rd-4th graders (N = 86) learn to estimate and compare fractions?

Analogy

If I know how big 3 is compared to 4, I know how big ¾ is!

Partitioning

To find ¾, break the line into 4 pieces, and count over 3.

Control Group

To find ¾, break the square into 4 pieces, and shade in 3.

zoom Session 1 **Session 3** Session 2 M = 3 daysM = 9 days 3 3 3 **Pretest 7_**Мі 6 7 <u>2</u> 6 $\frac{1}{7}$ 4 3 4 VS vs vs VS 0 0 Analogy Partitioning **Control Group** Partitioning Control Group Analogy

Study 1 Design

Immediate Posttest

<u>2</u> 6

Delayed Posttest

	Outcome	Image	Hypothesis
H1	Number Line Estimation (Learning)	6 7 0	Analogy & Partitioning > Control
H2	Comparison (Transfer)	17°°	Analogy & Partitioning > Control
H3	Estimation & Comparison with Large-Denominator Fractions	15 42 8 11 0	Analogy > Partitioning & Control

Q1. Did children learn to estimate fractions?

H1. Analogy and Partitioning will have lower error than Control

As hypothesized, both Analogy & Partitioning groups had lower PAE than Control group at *Immediate* Posttest.

Post ~ Pre + Condition + WhNumNLE

	$\beta_{standardized}$ (SE)	р
Intercept	0.000 (1.9)	.207
Pretest	0.41 (.08)	<.001***
Condition: Analogy	-0.28 (1.8)	.002**
Condition: Partitioning	-0.20 (1.8)	.027*
Whole Number PAE	0.40 (.18)	<.001***

Q1. Did children learn to estimate fractions?

H1. Analogy and Partitioning will have lower error than Control

At Delayed Posttest, both Analogy & Partitioning groups sustained lower PAE than Control group. (when controlling for pretest and whole number estimation)

A1. Both Analogy & Partitioning groups had lower error on Number Line Estimation than Control

	Outcome	Image	Hypothesis
H1	Number Line Estimation (Learning)	6 7 0 1	Analogy & Partitioning > Control
H2	Comparison (Transfer)	1 7 2 6 ∞ ∞	Analogy & Partitioning > Control
H3	Estimation & Comparison with Large-Denominator Fractions	15 42 0 0	Analogy > Partitioning & Control

Q2. Did children learn to *compare* **fractions**?

H2. Analogy and Partitioning will have higher accuracy than Control

As hypothesized, both Analogy & Partitioning groups had higher accuracy than Control group at *Immediate* Posttest.

Post ~ Pre + Condition + Pre*Condition

	$\beta_{standardized}$ (SE)	р
Intercept	0.00 (.09)	.422
Pretest	1.06 (.12)	<.001***
Pretest × Analogy	-0.81 (.17)	<.001***
Pretest × Partitioning	-0.37 (.17)	.115
Condition: Analogy	1.12 (.13)	<.001***
Condition: Partitioning	0.56 (.12)	.022* 19

Q2. Did children learn to *compare* **fractions**?

H2. Analogy and Partitioning will have higher accuracy than Control

At Delayed Posttest, only the Analogy group performed better than the Control group (when controlling for pretest)

Children with **lower** pretest scores benefitted **more** from receiving the analogy lesson.

A2. Both NL lessons transferred to comparison, but only Analogy group *retained* that learning.

	Outcome	Image	Hypothesis
H1	Number Line Estimation (Learning)	6 7 0 1	Analogy & Partitioning > Control
H2	Comparison (Transfer)	1 7 ° °	Analogy & Partitioning > Control
H3	Estimation & Comparison with Large-Denominator Fractions	15 42 0 0	Analogy > Partitioning & Control

Q3. Which is best for large-denominator fractions?

H3. Analogy will be better than Partitioning and Control lessons.

Estimation: Some support for H3

- Both Analogy & Partitioning were better than the control group at *immediate* posttest
- After a one-week *delay*, only the Analogy group was better than control group (by about 4%)

H3. Analogy will be better than Partitioning and Control lessons.

Comparison: Some support for H3

- Only Analogy was better than the control group at *immediate* posttest

After a one-week *delay*, neither number line group was better than the control.

A3. Some evidence that Analogy was best for large-denominator fractions

	Outcome	Image	Hypothesis
H1	Number Line Estimation (Learning)	6 7 0 1	Analogy & Partitioning > Control
H2	Comparison (Transfer)	1726 0	Analogy & Partitioning > Control
H3	Estimation & Comparison with Large-Denominator Fractions	15 42 0 0	Analogy > Partitioning & Control

Takeaways from Study 1

Study 1:

How can we best use **number lines** to support students' fraction **magnitude** knowledge?

- 1. The **analogy** lesson helped a little more than the partitioning lesson, especially for comparison and for large-denominator fractions.
- 2. We replicated previous findings that number lines are better for fraction magnitude knowledge, even when lesson is via Zoom.
- 3. Some fadeout from immediate to delayed posttest.

-| 4

-1

Improve sense-making

Key Questions of this dissertation

Study 1:

How can we best use **number lines** to support students' fraction **magnitude** knowledge?

Study 2:

What can we learn about **why fractions relate to algebra** from including **multiple measures** of fractions knowledge?

Math Ed: Fraction schemes

Fractions Knowledge

Algebra Knowledge

Your piece of pie is 4/5 as big as the piece shown below. Draw your piece of pie.

Stephen's cord is five times as long as Rebecca's cord. Can you write an equation for this situation?

 $S = 5 \times \mathcal{R}$ $\mathcal{R} = S \div 5$

e.g., Hackenberg & Lee (2015)

Which aspect(s) of fractions are most important?

Algebra Knowledge

Magnitude

Fractions

Knowledge

Arithmetic

Schemes

Shared influence on algebra knowledge?

Study 2 Design

Math anxiety & WM

8th grade students (N = 59) participated in 3 Zoom sessions.

Covariates	Fractions	Algebra
$ \int_{0}^{5} \frac{10}{7} + \frac{9}{2} + \frac{2}{3} \times \frac{5}{5} $ Whole Number skills $ \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	-Magnitude -Arithmetic -Schemes -Units Coordination	45-minute test, Mix of multiple choice & open- ended

2. The piece of pie below is 7/5 as big as your piece of pie. Draw your piece of pie.

6. The piece of pie below is 2/5 as big as your piece of pie. Draw your piece of pie.

Fractions

Arithmetic
$$\frac{3}{5} + \left(\frac{3}{10} \times \frac{4}{15}\right) =$$

3. The bar shown below is 7/3 as long as a whole candy bar. Draw the whole candy bar.

1	ſ	1	l	1	١	
	110	-				

Units Coordination

answer:

Use the space below to draw a picture and explain your answer.

Algebra

Which example could represent a linear function?

Conceptual Knowledge

Solve the equation for y. Show your work on paper and type your answer here.

5(y-2) = -3(y-2) + 4

Procedural Knowledge

Below is the beginning of Gabriella's, Jamal's, and Nadia's work in solving x + 7 - 3 = 12 - 2x.

Gabriella's way:	Jamal's way:	Nadia's way:
Subtract 3 from 7:	Add 2x to both sides:	Subtract $(7-3)$ from both sides:
x+4=12-2x	3x + 7 - 3 = 12	x = 8-2x

To start solving this problem, which way(s) may be used?

Flexibility

E E E

A class needs 5 leaves each day to feed its 2 caterpillars. How many leaves would they need each day for 12 caterpillars?

Proportional Reasoning

Study 2 Hypotheses

H1. Overall fractions knowledge will predict algebra scores, even accounting for covariates.

Fractions

Knowledge

H2. Competing hypotheses about which aspect of fractions will be most important...

Algebra

Knowledge

Overall fractions knowledge predicted algebra.

Which aspect(s) of fractions were UNIQUE predictors of algebra knowledge?

Model 📀 No Controls 🗗 All Controls

After controls, ONLY **fraction schemes** uniquely predicted students' algebra scores!

Algebra

Knowledge

Takeaways from Study 2

Fractions Knowledge

Magnitude -

Arithmetic ⁻

Schemes

Fraction schemes predicts algebra knowledge EVEN WHEN accounting for other math & cognitive skills

Fraction magnitude does NOT predict algebra knowledge when accounting for schemes.

Future directions for Study 2

Further investigate mechanisms

Efficient recognition of structure/relations? Improper fractions in particular?

3. The bar shown below is 7/3 as long as a whole candy bar. Draw the whole candy bar.

5(y-2) = -3(y-2) + 4

Replicate in different contexts

Paper & pencil instead of drawing on screen? Sample with lower math interest?

Summary of Findings

Study 1:

A **15-minute lesson** teaching children to use an **analogy** from whole number estimation to fraction estimation led to improved understanding of **fraction magnitudes**.

<u>Study 2:</u> **Fraction schemes**, but not magnitude, **uniquely predicts** students' **algebra** scores when controlling for other math and cognitive skills.

Implications of this dissertation

For future research?

For education and educators?

Implications for future research

Measure more aspects of fractions knowledge, esp. schemes.

Fractions Knowledge

Move toward more *specific* and *actionable* fractions-algebra models.

Need for interdisciplinary teams and partnerships with educators.

Educational Implications?

Teach broad fractions knowledge, and leverage intuitions.

Scaffold algebraic thinking during fraction instruction.

Thank you!

Percival Matthews

Ana Stephens

Allison Monday

Undergraduate Research Assistants:Valencia GriffinValerie BurokerPhoebe MillerAmelia JensenYining ZhangRose Eisenmenger

