Measuring and Supporting Proportional Reasoning: An Interdisciplinary Approach

Dissertation Defense

June 24, 2022

Alexandria Viegut, Dept. of Educational Psychology, UW - Madison

Algebra is crucial for students' outcomes

Gamoran \& Mare, 1989

Moses \& Cobb, 2002

Fractions may be the keys to the gate

- Fractions scores at age 10 predict algebra scores 5-6 years later, even controlling for other math skills, IQ, reading, etc. (Siegler et al., 2012)
- Correlated in many age groups (Hurst \& Cordes, 2018; Powell et al., 2019)
- Fractions predict how much students learn from algebra instruction (Booth et al., 2014)

Fractions may be the keys to the gate

Some research suggests it is all about magnitude

 $\frac{\frac{3}{5}}{\frac{7}{8} \frac{3}{5}}$Siegler et al. (2011)
Booth et al. (2014)

Some research suggests it is all about magnitude

Having an approximate sense of fraction magnitudes helps people avoid common errors!

We have intuitions about visual proportions that can help us with this "fraction sense"?

But other research shows that fractions knowledge is much broader

Fractions Knowledge

Study 1 focuses on magnitude.

What kind of lesson with number lines helps $3^{\text {rd }}-4^{\text {th }}$ graders build an approximate "fraction sense"?

Study 2 focuses on broader fractions knowledge

Fractions
Knowledge
Common in psych:
Magnitude
Arithmetic
Common in math ed:
Schemes
Units Coordination

Key Questions of this dissertation

Study 1:
 How can we best use number lines to support students' fraction magnitude knowledge?

```
Study 2:
What can we learn about why fractions relate to algebra from
including multiple measures of fractions knowledge?
```


Study 1: How can we use number lines to support students' fraction magnitude knowledge?

How big is 3 compared to 10 ?

How big is $3 / 10$ compared to 1 ?

Knowing how whole number sizes relate might help kids estimate fractions.

Study 1: How can we use number lines to support students' fraction magnitude knowledge?

Knowing how whole number sizes relate might help kids estimate fractions.

In a prior study with $\mathbf{2}^{\text {nd }}-3^{\text {rd }}$ graders:

Analogy Lesson

No Lesson

Study 1: Which lesson helps $3^{\text {rd }} \mathbf{4}^{\text {th }}$ graders ($\mathrm{N}=86$) learn to estimate and compare fractions?

Analogy

If I know how big 3 is compared to 4,
I know how big $3 / 4$ is!

Partitioning

To find $3 / 4$, break the line into 4 pieces, and count over 3.

Control Group

To find $3 / 4$, break the square into 4 pieces, and shade in 3.

Study 1 Design

Session $1 \underset{M=3 \text { days }}{1}$ Session $2 \underset{M=9 \text { days }}{ }$ Session 3

Study 1 Hypotheses

\(\left.$$
\begin{array}{|c|c|c|c|}\hline & \text { Outcome } & \text { Image } & \text { Hypothesis } \\
\hline \text { H1 } & \begin{array}{c}\text { Number Line Estimation } \\
\text { (Learning) }\end{array} & \frac{6}{7} & \begin{array}{c}\text { Analogy \& Partitioning } \\
>\end{array} \\
\hline \text { H2 Control }\end{array}
$$ \quad \begin{array}{c}Comparison

(Transfer)\end{array} \quad $$
\begin{array}{c}1\end{array}
$$\right]\)| Analogy \& Partitioning |
| :---: |
| $>$ |

Q1. Did children learn to estimate fractions?

H1. Analogy and Partitioning will have lower error than Control

As hypothesized, both Analogy \& Partitioning groups had lower PAE than Control group at Immediate Posttest.
Post ~ Pre + Condition + WhNumNLE

	$\beta_{\text {standardized }}(\mathrm{SE})$	p
Intercept	$0.000(1.9)$.207
Pretest	$0.41(.08)$	$<.001^{* * *}$
Condition: Analogy	$-0.28(1.8)$	$.002^{* *}$
Condition: Partitioning	$-0.20(1.8)$	$.027^{*}$
Whole Number PAE	$0.40(.18)$	$<.001^{* * *}$

Q1. Did children learn to estimate fractions?

H1. Analogy and Partitioning will have lower error than Control

[^0]
A1. Both Analogy \& Partitioning groups had lower error on Number Line Estimation than Control

	Outcome	Image	Hypothesis
	Number Line Estimation (Learning)		Analogy \& Partitioning > Control
H2	Comparison (Transfer)	$\frac{1}{7}$ $\frac{2}{6}$	Analogy \& Partitioning > Control
H3	Estimation \& Comparison with Large-Denominator Fractions	$\frac{15}{42}$ $\frac{8}{11}$	Analogy > Partitioning \& Control

Q2. Did children learn to compare fractions?

H2. Analogy and Partitioning will have higher accuracy than Control

As hypothesized, both Analogy \&
Partitioning groups had higher accuracy than Control group at Immediate Posttest.

Post \sim Pre + Condition + Pre*Condition

	$\beta_{\text {standardized }}(\mathrm{SE})$	p
Intercept	$0.00(.09)$.422
Pretest	$1.06(.12)$	$<.001^{* * *}$
Pretest \times Analogy	$-0.81(.17)$	$<.001^{* * *}$
Pretest \times Partitioning	$-0.37(.17)$.115
Condition: Analogy	$1.12(.13)$	$<.001^{* * *}$
Condition: Partitioning	$0.56(.12)$	$.022^{*} 19$

Q2. Did children learn to compare fractions?

H2. Analogy and Partitioning will have higher accuracy than Control

At Delayed Posttest, only the Analogy group performed better than the Control group
(when controlling for pretest)

Children with lower pretest

 scores benefitted more from receiving the analogy lesson.
A2. Both NL lessons transferred to comparison, but only Analogy group retained that learning.

	Outcome	Image	Hypothesis
	Number Line Estimation (Learning)	\qquad	Analogy \& Partitioning > Control
	Comparison (Transfer)	$\frac{1}{7} \quad \frac{2}{6}$	Analogy \& Partitioning > Control
H3	Estimation \& Comparison with Large-Denominator Fractions	$\frac{15}{42} \quad \frac{8}{11}$	Analogy > Partitioning \& Control

Q3. Which is best for large-denominator fractions?

H3. Analogy will be better than Partitioning and Control lessons.

Estimation: Some support for H3

- Both Analogy \& Partitioning were better than the control group at immediate posttest
- After a one-week delay, only the Analogy group was better than control group (by about 4\%)

Q3. Which is best for large-denominator fractions?

H3. Analogy will be better than Partitioning and Control lessons.

Comparison: Some support for H3

- Only Analogy was better than the control group at immediate posttest
- After a one-week delay, neither number line group was better than the control.

Analogy
Partitioning Control

A3. Some evidence that Analogy was best for large-denominator fractions

	Outcome	Image	Hypothesis
H1	Number Line Estimation (Learning)	$\frac{6}{7}$	Analogy \& Partitioning $>$
H2 Control			

Takeaways from Study 1

Study 1:

How can we best use number lines to support students' fraction magnitude knowledge?

1. The analogy lesson helped a little more than the partitioning lesson, especially for comparison and for large-denominator fractions.
2. We replicated previous findings that number lines are better for fraction magnitude knowledge, even when lesson is via Zoom.
3. Some fadeout from immediate to delayed posttest.

Future Directions for Study 1

Partitioning

Analogy

Improve sense-making

Key Questions of this dissertation

Study 1: How can we best use number lines to support students' fraction magnitude knowledge?

Study 2:

What can we learn about why fractions relate to algebra from including multiple measures of fractions knowledge?

Study 2: Connecting Fractions and Algebra?

Magnitude
Why?

Arithmetic
Schemes

Psychology: Fraction magnitude + arithmetic

Math Ed: Fraction schemes

Fractions Knowledge

Your piece of pie is $4 / 5$ as big as the piece shown below. Draw your piece of pie.

Partition

Iterate

Schemes

Algebra

 KnowledgeStephen's cord is five times as long as Rebecca's cord.
Can you write an equation for this situation?

$$
\begin{aligned}
& S=5 \times R \\
& R=S \div 5
\end{aligned}
$$

e.g., Hackenberg \& Lee (2015)

Which aspect(s) of fractions are most important?

Study 2 Design

8th grade students $(\mathbf{N}=59)$ participated in 3 Zoom sessions.

Covariates
Fractions

Algebra

45-minute test, Mix of multiple choice \& openended

Fractions

Magnitude
 $\frac{8}{17} \quad \frac{2}{15}$
 Arithmetic $\frac{3}{5}+\left(\frac{3}{10} \times \frac{4}{15}\right)=$

Schemes

3. The bar shown below is $7 / 3$ as long as a whole candy bar. Draw the whole candy bar.

4. The piece of pie below is $7 / 5$ as big as your piece of pie. Draw your piece of pie.

5. The stick shown below is $4 / 5$ as long as a whole candy bar. Draw the whole candy bar.

6. The piece of pie below is $2 / 5$ as big as your piece of pie. Draw your piece of pie.

Fractions

Magnitude
 $\frac{8}{17} \quad \frac{2}{15}$
 Arithmetic $\frac{3}{5}+\left(\frac{3}{10} \times \frac{4}{15}\right)=$

Schemes
3. The bar shown below is $7 / 3$ as long as a whole candy bar.

Draw the whole candy bar.

Units Coordination

Use the space below to draw a picture and explain your answer.

Algebra

Which example could represent a linear function?

Below is the beginning of Gabriella's, Jamal's, and Nadia's work in solving $x+7-3=12-2 x$.

Gabriella's way:	Jamal's way:	Nadia's way:
Subtract 3 from 7: $x+4=12-2 x$	Add $2 x$ to both sides: $3 x+7-3=12$	Subtract $(7-3)$ from both sides: $x=8-2 x$

To start solving this problem, which way(s) may be used?

Flexibility

Solve the equation for y. Show your work on paper and type your answer here.
$5(y-2)=-3(y-2)+4$

Procedural Knowledge

Conceptual Knowledge

x	-3	0	3
y	4	6	8

$\frac{5}{x}+y=-7$

x	1	3	5	3
y	4	2	0	-2

$$
x+\frac{2}{y}=4
$$

A class needs 5 leaves each day to feed its 2 caterpillars. How many leaves would they need each day for 12 caterpillars?

Overall score

\% Accuracy

Study 2 Hypotheses

H1. Overall fractions knowledge will predict algebra scores, even accounting for covariates.

H2. Competing hypotheses about which aspect of fractions will be most important...

Overall fractions knowledge predicted algebra.

Which aspect(s) of fractions were UNIQUE predictors of algebra knowledge?

Model No Controls All Controls

After controls, ONLY fraction schemes uniquely predicted students' algebra
scores!

Takeaways from Study 2

Future directions for Study 2

Further investigate mechanisms

Efficient recognition of structure/relations?
Improper fractions in particular?
3. The bar shown below is $7 / 3$ as long as a whole candy bar. Draw the whole candy bar.

$$
5(y-2)=-3(y-2)+4
$$

Replicate in different contexts

Paper \& pencil instead of drawing on screen? Sample with lower math interest?

Summary of Findings

Study 1:

A 15-minute lesson teaching children to use an analogy from whole number estimation to fraction estimation led to improved understanding of fraction magnitudes.

Study 2:

Fraction schemes, but not magnitude, uniquely predicts students' algebra scores when controlling for other math and cognitive skills.

Implications of this dissertation

For future research?

For education and educators?

Implications for future research

Measure more aspects of fractions knowledge, esp. schemes.
Fractions Knowledge

Move toward more specific and actionable fractions-algebra models.

Fractions

 Algebra

Need for interdisciplinary teams and partnerships with educators.

Educational Implications?

Teach broad fractions knowledge, and leverage intuitions.

Scaffold algebraic thinking during fraction instruction.

a	2	4	8	50	200
b	5	10	20	125	$?$

Thank you!

Percival Matthews

Ana Stephens

Allison Monday

ME.D. Mathematics Education

Undergraduate Research Assistants:

Valencia Griffin
Valerie Buroker Phoebe Miller

Amelia Jensen
Yining Zhang
Rose Eisenmenger

[^0]: At Delayed Posttest, both Analogy \& Partitioning groups sustained lower PAE than Control group. (when controlling for pretest and whole number estimation)

