Alexandria A. Viegut, Ana C. Stephens, Percival G. Matthews
University of Wisconsin - Madison

Background and Research Question

- Some studies show that understanding fraction magnitude is most helpful for algebra. (e.g., Booth et al., 2014)
- Other studies show that fraction arithmetic drives the fractions-algebra relation. (e.g., Barbieri et al., 2021)
Does it depend on which aspects of algebra knowledge?

Method ($\mathrm{N}=86$ Undergraduates)

- Fraction Magnitude (Fazio et al., 2016; Hansen et al., 2015)
- Fraction Arithmetic (Kalra et al., 2020)
- Algebra Assessment (Rittle-Johnson \& Star, 2008)
- Math Anxiety (MARS-R) (Hopko, 2003)
- MATH \& English (ENGL) college entrance exams

Aspects of Fractions

Magnitude: composite Z-score

Comparison

Number Line Estimation (0-1, 0-2, 0-5)

Arithmetic: \% accuracy on 12 problems

$$
\begin{array}{ll}
\frac{2}{5}+\frac{5}{4}+\frac{9}{8}= & \frac{3}{5}+\left(\frac{3}{10} \times \frac{4}{15}\right)= \\
1 \frac{1}{5}-\frac{3}{5}= & \frac{6}{55} \div \frac{3}{25}=
\end{array}
$$

Aspects of Algebra

Algebra Concepts
 (8 items)

Which example could represent a linear function?

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|}
\hline x & -3 & 0 & 3 \\
\hline y & 4 & 6 & 8 \\
\hline
\end{array} \\
& \frac{5}{x}+y=-7
\end{aligned}
$$

$$
x+\frac{2}{y}=4
$$

Algebra Procedures (7 items)

Solve the equation for y. Show your work on paper and type your answer here.
$5(y-2)=-3(y-2)+4$

Algebra Flexibility (5 items)

Below is the beginning of Gabriella's, Jamal's, and Nadia's work in solving $x+7-3=12-2 x$.

Gabriella's way:	Jamal's way:	Nadia's way:
Subtract 3 from 7:	Add $2 x$ to both sides:	
$x+4=12-2 x$	$3 x+7-3=12$	Subtract $(7-3)$ from both sides:
$x=8-2 x$		

To start solving this problem, which way(s) may be used?

Hypotheses

1. Magnitude \rightarrow Algebra Concepts

- To understand fraction magnitudes, students must have strong conceptual knowledge of fractions.
- Fraction magnitude knowledge predicts algebra performance (Booth \& Newton, 2012) \& learning (Booth et al., 2014)

2. Arithmetic \rightarrow Algebra Procedures \& Flexibility

- Fraction arithmetic and algebra problem-solving require similar skills and are associated. (Barbieri et al., 2021; Hurst \& Cordes, 2018)
- Flexible fraction arithmetic skills may support algebraic flexibility.

Almost all fractions \& algebra tasks were correlated.

Results: Predicting Algebra

Controlling for age, math anxiety, and overall math and English achievement, which fractions scores still predict algebra scores?

- Fraction magnitude scores predicted conceptual knowledge of algebra ($p=.03$).
- Fraction arithmetic predicted algebraic flexibility ($p=$.04) and procedural knowledge ($p<.01$).

Discussion

- College students' fractions knowledge predicted algebra scores, but these relations were specific rather than global.
- Fraction magnitude knowledge and arithmetic proficiency may influence algebra through distinct mechanisms.
- English scores had a stronger effect on algebraic concepts and flexibility than fractions or math achievement.
- More work is needed to understand (1) the development of these relations and (2) the mechanisms driving them.

